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THE STRUCTURE OF RADICAL PROBABILISM* 

ABSTRACT. Does the philosophy of Radical Probabilism have enough structure to enable it 
to address fundamental epistemological questions? The requirement of dynamic coherence 
provides the structure for radical probabilist epistemology. This structure is sufficient to 
establish (i) the value &knowledge and (ii) tong run convergence of degrees of belief. 

1. INTRODUCTION 

Richard Jeffrey advocates a skeptical epistemology grounded in radical 
probabilism. The fundamental concept of epistemology is not to be taken 
as knowledge, but rather degree of belief. It is rarely plausible that degrees 
of belief should take the extreme form of certainty. In particular, learning 
does not proceed by conditioning on observation statements which are 
learned with certainty. All sorts of learning processes are deemed possible, 
s o m e -  but not a l l -  falling under Jeffrey's well-known model of probability 
kinematics. 

In avoiding oversimplifications and illicit assumptions, radical prob- 
abilism meets high epistemological standards. But does this degree of  
realism leave us with any interesting structure in the general framework? 
In this essay I will review results about how dynamic coherence provides 
structure in the radical probabilist picture, and how some central features 
of  a conditioning model carry over to the more general approach of  radical 
probabilism. 

2. BASIC DYNAMIC COHERENCE RESULTS 

The foundation for dynamic coherence arguments is a well-known argu- 
ment by de Finetti (1937) for the definition of conditional probability as 
Pr(q]p) = Pr(p & q)/Pr(p) when Pr(p) > 0. Conditional probabilities are 
used to evaluate conditional bets. But de Finetti pointed out that one can 
achieve the effect of a bet on q conditional on p by making two uncon- 
ditional bets, one on p & q and another against p, at stakes such that the 
net payoff is zero if the condition, p, is not realized. For the two routes 
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of  evaluation to agree the usual definition of conditional probability is 
required. 

Ian Hacking (1967) argued that this result is totally static, that it deals 
only with the coherence of conditional and unconditional probabilities at 
a single time, and that it gives no support whatsoever for Bayes' rule 
of updating by conditioning on the evidence. It takes only a small twist, 
however, to turn de Finetti's observation into a dynamic argument for 
Bayes' rule. Among philosophers, this step was taken by David Lewis 
and communicated by Paul Teller (1973). In the statistical literature the 
argument is often taken to be implicit in de Finetti, although what de Finetti 
actually says does not make exegesis straightforward.t 

Suppose that there is a finite set of  evidence statements, each with 
positive prior probability, one of  which is to be learned for certain. And 
suppose that the epistemic agent is considering potential rules for updating 
subjective probability on the basis of the evidence learned. Mathematically, 
such a rule is a function from the possible evidence E = {el, e2, �9 �9 eu } to 
revised probability measures. Such a rule is incoherent if a bettor knowing 
the rule and making a finite number of bets initially and a finite number of 
bets after the evidence is in, can achieve a sure net gain. Mathematically, 
a bettors strategy is a pair of  functions, the first mapping the agent's initial 
probability and rule onto a finite set of  initial bets; the second mapping 
the initial probabilities, rule and evidence learned onto a finite set of  bets. 
The result is that it is necessary and sufficient for coherence that the agent 
adopt Bayes' rule of updating by conditioning on the evidence. The leading 
idea of  the proof is that in this situation the bettor can make a bet on p 
conditional on e in one of  two ways. The first is to make to conditional 
bet in the de Finetti way; the second is to adopt a strategy of waiting 
until the evidence is in and betting on p just in case the evidence is e. If 
these two ways disagree it is obvious that the way is open to a strategy 
which guarantees a sure win conditional on e, and since e has positive 
initial probability a suitable initial sidebet against e converts this to a 
strategy which unconditionally guarantees a sure win. One might have 
some reservations as to the applicability of the argument on account of  the 
restrictions that the set of  potential evidential statements be (i) finite and 
(ii) such that each has positive prior probability [Kyburg (1978)], but it 
turns out that these conditions are inessential. Lane and Sudderth (1985) 
show that the result holds quite generally. 

What happens when we pass from the foregoing to the radical proba- 
bilist model? Here the epistemic agent starts with an initial probability, prl, 
passes through a "black-box" learning situation, and comes out with a final 
probability, pr2. We are not supposed to speculate on what goes on inside 
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the black box. Nevertheless, there is a dynamic coherence result due to 
Goldstein (1983) and van Fraassen (1984) parallel to that for conditioning. 
Suppose that the agent's prior probability for his posterior probability of 
p is concentrated on a finite number of values, a l . . . am.  Then coherence 
requires that: 

(M) prl(plprz(p) = ai) = ai ( f o r / =  l t o rn )  

which has as a consequence that the prior probability is the expectation of 
posterior probability. 2 

The bets used to make the dutch book are the same as before, except 
that instead of  bets conditional on a statements of evidence, e, we have 
bets conditional on a statement of final probability, pr2 (p) = a. Dynamic 
coherence forces the black box learner to behave as/fshe were conditioning 
on the statement of final probability, as in Skyrms (1980). 3 

There has been some question as to whether the foregoing dynamic 
coherence arguments hold up in the context of game theory or sequential 
decision theory, the thought being that if an incoherent agent "sees a dutch 
book coming" she will simply refuse to bet at all and thus avoid the 
sure loss. See Maher (1992), Earman (1992). Analysis of the argument, 
however, shows that such is not the case. [For details see Skyrms (1993). 
That discussion is framed in terms of the Lewis conditioning model, but 
the same analysis works for the radical probabilist black box model.] The 
incoherent agent, subsequent to the black box experience, will accept the 
cunning bettors offer as a way of cutting her losses, while regretting the 
initial bets she made prior to going into the black box. But initially, even 
knowing the bettor's strategy, she will accept his initial offers as a means 
of  cutting her losses while rueing the decisions that she believe she will be 
disposed to make once she has gone through the black box. The analysis 
also has consequences for the discussion of the next section. 

Between the transparency of the conditioning model of learning and the 
opacity of the "black box", we have models of various degrees of  translu- 
cency generated by Jeffrey's rule of updating by probability kinematics on 
a partition. Jeffrey's basic model assumes a finite partition each of whose 
members has positive prior probability. A probability, pr2 is said to come 
from another prl by probability kinematics on this partition just in case the 
final probabilities conditional on members of the partition, where defined, 
remain the same as the initial probabilities conditional on members of the 
partition. Conditioning on a member of the partition is the special case 
of probability kinematics in which that member gets final probability of 
one. Jeffrey had in mind a model in which one could approximate certain 
evidence without being forced to regard learning as learning for certain. 
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More general forms of the rule are possible. To say that pr2 comes from 
prl by probability kinematics on the partition is to say that it is a sufficient 
partition for {prl, pr2}. The natural generalization says that pr2 comes 
from prl by probability kinematics on a sub-sigma-algebra, if it is a suffi- 
cient sub-sigma-algebra for {prl, pr 2 } [Diaconis and Zabell (1982)]. Here, 
however, we focus on the simplest case. 

From the point of view of conditioning, Jeffrey's rule relaxes structure; 
from the point of view of the black box model, Jeffrey's rule (with respect 
to some fixed partition) imposes structure. In what sense can dynamic 
coherence be brought to bear on probability kinematics? 

Suppose that the agent about to go into the black box, believes that 
the only information she will gain will be information about a partition of 
colors, although the information may not be certain. One way to express 
this is to introduce a later "reference point" in which she find out the true 
member of the color partition. If the black box only provided information 
about color, the going through the black box and then finding out the true 
color with certainty should result in the same probability, pr3, as one would 
have gotten by bypassing the black box and going directly from prl via 
certain learning to pr3. Then by the Lewis-Lane-Sudderth argument, the 
probabilities conditional on members of the partition should be the same 
in pr3 as in pr2 and they also should be the same in pr3 as in prl. Therefore 
pr2 must come from prl by probability kinematics on the partition. 

This is the leading idea of a dutch book argument for probability kine- 
matics in Skyrms (1987) and for a somewhat different dutch book theorem 
for probability kinematics based on ideas of Armendt (1980) in Skyrms 
(1990). What these theorems show is that if the agent believes with prob- 
ability one that the learning experience only gives information about the 
partition in question, then coherence requires that belief change proceed 
by probability kinematics on that partition. 

3. THE VALUE OF KNOWLEDGE 

The fundamental theorem of epistemology is that knowledge is good for 
you. That is to say that the expected utility of acquiring pure cost free 
information 4 is non-negative, and indeed positive if there is any positive 
probability that the information will change your mind as to the opti- 
mal act to perform. The theorem is proved in the context of the classical 
conditioning model by Savage (1954) and Good (1967). 

It is, in fact, anticipated in a manuscript of Frank Ramsey that I discov- 
ered in the Ramsey archives at the University of Pittsburgh. The note is 
on two pages which were separated by another on a quite different topic. 
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There is some indication that Ramsey was interested in extending the the- 
orem to something like Jeffrey's rule, but this is a matter of interpretation. 
It is discussed in Skyrms (1990) pp. 93-96. These notes of Ramsey were 
subsequently transcribed and published by Nils-Eric Sahlin and by Maria 
Carla Galavotti. 

In 1989 Paul Graves showed how the value of knowledge theorem can 
be demonstrated in a model in which agents update by Jeffrey's rule. In 
this model agents satisfy condition (M) of the previous section as well as a 
sufficiency condition for the partition used by Jeffrey's rule. Subsequently 
it became clear to Graves and to myself that condition (M) alone is all that 
is required for the value of knowledge theorem [Skyrms (1990) Ch. 4]. The 
heart of the argument is very simple. Let B(pr) be the expected utility of 
the Bayes act - the act that maximizes expected utility - according to the 
probability pr. Then, under the assumptions of the theorem which I discuss 
in the foregoing reference: 

U(Act now) = B[E(pr:)] 

and 

U(Leam now, act later) = E[B(pr:)] 

That the utility of learning now and acting later is greater than or equal to 
the utility of acting now is an immediate consequence of the convexity of 
B by Jensen's inequality. 

In this setting, condition (M) is sufficient for the value of knowledge 
theorem. It is necessary? In other words, if condition (M) fails in the black 
box situation can we find some decision problem such that with respect 
to it the expected utility of the expected utility of acting is greater than 
the expected utility of going through the black box and then acting? An 
affirmative answer follows immediately from the previous discussion of 
dynamic coherence. Suppose that the agent's beliefs about an impending 
black box violate condition (M) in the simplest case where the agents 
prior probabilities are concentrated on a finite number of possible final 
probabilities. For example, suppose that pri(Q]pr:(Q) = 2/3) = 1/3 
and pri(pr:(Q) = 2/3) > 0. The violation of condition (M) gives us 
conditional bets which look unattractive ex ante but which the agent believe 
will look attractive expost if the condition is realized. For example consider 
an even money bet on Q conditional on pr: (Q) = 2/3. Now suppose that 
the decision problem is whether to accept or reject this bet. The decision 
maker will assign high expected utility to act now (and reject the bet) rather 
than going through the black box and acting later (and risking acceptance 
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o f  the bet). I suggest elsewhere, that failure o f  condition (M) be interpreted 
as reflecting the agent's belief that this black box is not properly thought 
o f  as a "learning situation" but rather as some other kind of  belief change. 

Retuming to the theme of  this paper, in the radical probabilist frame- 
work the fundamental theorem of  epistemology holds just when we have 
dynamic coherence. 

4. CONVERGENCE 

But can radical probabilists prove anything about convergence in the long 
run? In Bayes or Bust John Earman is skeptical about the resources of  
skeptical philosophy: 

�9 . .  a Bayes i an i sm  that  appeals  to both Dutch  Book and strict condit ional izat ion is on a 

collision course with itself, The use of strict conditionalization leads to situations where 
Pr(A) -= 1 although ~ A. As a result, something almost as bad as a Dutch book befalls 
the conditionalizer; namely she is committed to betting on the contingent proposition A at 
maximal odds, which means that in no possible outcome can she have a positive gain and in 
some possible outcome she has a loss ( a violation of what is called strict coherence). It is too 
facile to say in response that this is a good reason for abandoning strict conditionalization 
in favor of Jeffrey conditionalization or some other rule for belief change; for all the results 
about merger of opinion and convergence to certainty so highly touted in the Bayesian 
literature depend on strict conditionalization... (Earman 1992, 41). 

There is, however, a general convergence theorem for radical probabilist 
learning with connections to a fuller treatment of  dynamic coherence. 

Contemplate, at the onset, the prospect of  an infinite sequence of  black 
box learning situations. In each episode you go into the black box with a 
probability of  proposition A and come out with a revised probability of  
proposition A. Here we make no assumptions about what goes on in the 
black box. We do not assume that you conditionalize on some evidential 
proposition delivered to you in the box. We do not assume anything else 
about the structure of  your learning experience either. Now we can look 
for conditions which will get almost sure convergence. Let us look for a 
martingale. 

Consider a probability space -he re  your degree-of-belief space, and let 
x l ,  x2 , . .  �9 be a sequence o f  random variables on that space and F1, F2, �9 �9 
be a sequence of  subsigma fields. The sequence o f  random variables is a 
martingale relative to the sequence o f  sigma-fields if: 

(i) The sequence o f  sigma-fields is non-decreasing 
(ii) xn is measurable F~ 

(iii) E[[xn 1] is finite 
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(iv) with probability 1: E[xn+~IIF~] = xn 

The sequence of random variables is a martingale if it is a martingale 
relative to some sequence of sigma fields. 

You are interested in whether you can have confidence that your sequence 
of revised probabilities will converge, so let us take the random variable 
xn to be the revised probability of proposition A after coming out of  the 
nth black box. Since this is a probability, condition (iii) is automatically 
satisfied. We do not have any evidence statements given in our model to 
generate sigma-fields, so we might as well consider the sigma-fields gener- 
ated by our random variables: Fn = C r [ X l ,  �9 � 9  Xn]. With these sigma fields, 
(i) and (ii) are automatically satisfied and we are left as the requirement 
for a martingale: 

(iv') E[x~+l IlXl,.. . ,  x~] : xn 

If (iv I) is not satisfied, you may very well think that your beliefs are likely 
to oscillate forever -  for instance with revised probability of A being high 
after even black boxes and low after odd black boxes. But if (iv t) is satisfied 
and if your degrees of belief are countably additive 5, then by the martingale 
convergence theorem you believe with probability one that your sequence 
of revised probabilities of  A will converge. Condition (iv t) is a sufficient 
condition for almost sure convergence of opinion in a black-box learning 
situation, but does it have any special status for a radical probabilist? 

5. COHERENCE REVISITED 

In this section we see the martingale condition (iv I) is a necessary condition 
for dynamic coherence of degrees of belief in a setting where we have an 
infinite sequence of black box learning situations. We will assume sigma- 
coherence here, in order to ensure sigma additivity. That is to say a bettor 
can make a countable number of bets in his attempt to dutch book you, and 
you are sigma coherent if no dutch book can be made. 

As a preliminary, consider the case of  two black boxes. You now con- 
template going through 2 black box learning situations, coming out at time 
tl with a revised probability of A, xl, and coming out at time t2 with a 
further revised probability of A, x2. Also at tl you will have a revised 
expectation of  x2, which we will call Yl. We assume that Yl is measurable 
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with respect to the sigma-field generated by x 1 and integrable. From your 
current standpoint at to, Yl is also a random variable. 

(Ca) Coherence requires that Yl is a version of  the conditional expec- 
tation: 

E[x2l[Xl]. 

Let G be a set in the or-field generated by xl. At tl, a contract which pays 
off x2 at t2 has a fair price of Yl to the agent. At to, a contract (CON1) 
with a fiducial agent to buy or sell such a contract at tl at its tl fair price, 
conditional on G being the case at tl ,  has a fair price of: 

~yl dp (CON1) 

At to, a contract, (CON2), conditional on G which pays off Z2 at t2, has 
a fair price of: 

x2dp (CON2) 

Since these contracts have the same consequences, coherence requires that 
they have equal value. 

(Cb) Coherence requires that Yl = Zl almost everywhere. 

If the agent were always coherent at tl, then Yl = xl by the Goldstein-van 
Fraassen argument. If the agent is incoherent at t l for a set, S, of  positive 
measure in p, then the agent can be dutch-booked at to: bet at to against S; 
if S is not true at tl collect; if S is true at tl pay off the original bet and 
proceed with the dutch book at stakes large enough to assure a net profit. 

(C) Coherence requires that (for some version) E[x211Xl] = X l. 

From (Ca) and (Cb), Xl is a version of  E[x21]zl]. 

The foregoing reasoning generalizes. You now contemplate an infinite 
sequence of  black box learning experiences together with the associated 
sequences of  revised probabilities of  A, x 1, x2, x3, �9 �9 �9 Then the coherence 
argument for conditional expectation [as under (Ca)] gets us: 

(CCa) Coherence requires that Yn+l is a version of the conditional 
expectation: 
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E[xn+2llXl,. . ., Xn+l]- 

and the coherence argument for future coherence [as under (Cb)] gets us: 

(CCb) Coherence requires that Yn+l = Xn+l almost everywhere. 

Putting these together we have: 

(CC) Coherence requires the martingale condition, (iv'). 

6. ANOTHER MARTINGALE.'? 

Let IA be the indicator function for A, Fn = c r [ X l , . . . ,  Xn] as before and 
Fo~ be the sigma field generated by the union of the Fns. The random 
variables E[IAIIFn] form a martingale relative to the sigma fields Fn. 
Because of the uniform integrability properties of conditional expectations 
we can not only say that this martingale converges with probability one, but 
we can also say something about the random variable to which it converges: 

E[ZAIIG]-+ E(-rAll/%o)(with probability = 1) 

We might gloss this by saying that with this martingale we have conver- 
gence to a maximally informed opinion. 

Furthermore, we can say this without invoking any dynamic coherence 
arguments (although we presuppose static sigma-coherence). The reason 
is that our conclusion does not say anything about the temporal process of 
belief change, since there is nothing to link the conditional expectations, 
E[IAI[Fn], to subsequent belief states. 

Suppose, however, that we now assume dynamic coherence. Let En (IA) 
be the expectation of the indicator, IA, that you have at tn according to your 
probabilities at tn. By a coherence argument for conditional expectation 
like that given in Section 3: 

( c c c )  E ~ ( I 4 ) =  E[IAI[G] 

and, by definition: 

x .  = En(IA).  

Under the assumption of dynamic coherence, the martingale of this section 
is the same martingale as that of Section 4: 

: (E[fAIIFG 
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So we have: 

BR1AN SKYRMS 

Xn ~ E(IAIIF~) : P(AIIF~) (with probability 1). 

7. CONVERGENCE AND KINEMATICS 

What is the relation of probability kinematics to the martingale property? 
First, let us notice that the convergence results which we discussed for 
a single proposition, A, apply more widely. Consider a finite number of 
propositions, A1 , . . . ,  An. Their probabilities are given by a vector, x, in 
[0,1]n. The foregoing martingale convergence story continues to hold for 
the vector valued random variables, x l, x2 . . . .  [see Neveu (1975) for vector 
valued martingales]. 

Probability kinematics can be thought of  as a technique for making 
the black box translucent. For example, suppose the black box learning 
situations consist of repeatedly looking at a jellybean by candlelight. R 
is the proposition that it is Red; C is the proposition that it is cinnamon 
flavored, xl, x2 . . .  are the probability vectors for these propositions at 
subsequent times, with the first coordinate being color and the second 
flavor: e.g. x2 [1] is the probability at time 2 the it is Red. 

Suppose that you are certain that belief change will be by probability 
kinematics on { R , - R } ;  that probabilities conditional on R and on - R  
will remain unchanged. You do not automatically satisfy the martingale 
condition. You might believe that your probability for R will be .99 at even 
numbered times and .01 at odd numbered times. In such a case you would 
expect your beliefs to oscillate forever, and you would be susceptible to a 
dynamic dutch book. 

But if your beliefs do have the martingale property as well, then with 
probability one the vector valued martingale, xl, x2, . . .  converges to 
a vector valued random variable xc~. With probability one, the random 
variable xoc must take values which preserve the original probabilities of 
flavor conditional on R and - R ;  that is to say the limiting beliefs come 
from the initial ones by probability kinematics on this partition. 

If we consider sequences of belief change by probability kinematics 
where the kinematics does not take place with respect to a single fixed 
partition the situation is much more complex. Some relevant results can be 
found in Rota (1962) and in Diaconis and Zabell (1982). 
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8. CONCLUSION 

Radica l  P robab i l i sm takes its structure f rom considera t ions  o f  dynamic  

coherence .  W h e r e  applicable,  be l ie f  change  b y  probabi l i ty  k inemat ics  on 

a par t i t ion or  a s igma field adds more  structure. But  the structure imposed  

b y  cohe rence  alone is sufficient for two ve ry  general  theorems that are 

ha l lmarks  o f  the Bayes i an  point  o f  view: the convergence  theorem and the 

t heo rem on  the value o f  knowledge .  

NOTES 

* This paper was read at the Luino conference on Probability, Dynamics and Causality 
June, 1995. The discussion of convergence is largely drawn from Skyrms (forthcoming). I 
would like to thank Dick Jeffrey, Persi Diaconis and Sandy Zabell for helpful comments. 
i For example see de Finetti (1975) pp. 202-204. 
2 As before, the basic argument carries over to more general settings. See Skyrms (1980) 
Appendix 2, Goldstein (1983), Gaifman (1988), Skyrms (1990) Ch. 5. 
3 In this regard, it may be of interest to juxtapose the coherence argument of Lewis for 
conditioning with the second order coherence argument of Uchii (1973). I take this to be 
the point of some of Colin Howson's remarks at this conference. 
4 We assume the act of acquiring the information-performing the experiment or making the 
observation- does not itself affect the probabilities or values of outcomes of the decision 
in question. For further discussion see Maher (1990) and Skyrms (1990). 
5 I will not address here the question of countable additivity in radical probabilism, but 
I would like to point out that the Bolker representation for Jeffrey's system of personal 
probability yields countable additivity. 
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